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Principle Component 
Analysis (PCA)

• A method for decomposing complex data 
involving many attributes.

• Reveals the primary source of variation.

• Reveals any important relationships 
between attributes.

Wednesday, 24 October, 12



PCA Use

• Heavily used in:

• Statistics

• Image reconstruction, compression 
(think a .jpeg image)

• Structural engineering
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PCA Implementation

• Uses an eigenvalue / eigenvector 
decomposition to determine what aspects 
of data are most important.
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Example

• This data clearly 
follows a trend 
line.

• PCA finds that 
trend line.
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Step 1

• Compute the mean / average of each 
variable

• Superscripts index different observations.
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Step 2

• Compute variance and co-variance
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Step 2
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Step 2

• These expressions describe how the 
observations differ from their average.
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Step 3

• For a covariance matrix

C =


var(x1) cov(x1, x2)

cov(x2, x1) var(x2)

�

• Notice that C is symmetric since 
cov(x1,x2)=cov(x2,x1).
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Step 4

• In this case, the covariance matrix is

C =


.34 .69
.69 1.42

�

• Now find the eigenvalues and eigenvectors.

C � �I =

.34� � .69
.69 1.42� �

�

�2 � 1.76�+ .0067 = 0
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Step 4

• Large eigenvalues indicate the eigenvector 
is important.

• Small eigenvalues indicate little of the data 
variation occurs in that direction.

�1 = .0074 �2 = 1.7588

~v1 = [�.89, .44] ~v2 = [.44, .89]
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End Result

• So the “dominant” 
eigenvector captures 
the data trend.

• Can Say x2=2*x1
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Another example

• Data appears much 
more random and 
less corollated.

• PCA will tell you 
this.
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PCA Results

• Nether eigenvalue is 
dominant.

• So there is no “trend” 
in the data

�1 = .91
�2 = 1.05
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PCA Recap

• Large eigenvalues are associated with 
“directions” that account for a lot of data 
variation.

• This suggests a correlation between variables.

• Small eigenvalues are associated with directions 
that account for very little data variation.
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