## Math 2J Lecture 12 - $10 / 24 / 12$

William Holmes

# Principle Component Analysis (PCA) 

- A method for decomposing complex data involving many attributes.
- Reveals the primary source of variation.
- Reveals any important relationships between attributes.


## PCA Use

- Heavily used in:
- Statistics
- Image reconstruction, compression (think a .jpeg image)
- Structural engineering


# PCA Implementation 

- Uses an eigenvalue / eigenvector decomposition to determine what aspects of data are most important.


## Example



- This data clearly follows a trend line.
- PCA finds that trend line.


## Step I

- Compute the mean / average of each variable
- Superscripts index different observations.

$$
\begin{aligned}
& \bar{x}_{1}=\frac{x_{1}^{1}+x_{1}^{2}+\ldots+x_{1}^{n}}{n}=\frac{\sum_{1} x_{1}^{i}}{n} \\
& \bar{x}_{2}=\frac{x_{2}^{1}+x_{2}^{2}+\ldots+x_{2}^{n}}{n}=\frac{\sum_{1}^{n} x_{2}^{i}}{n}
\end{aligned}
$$

## Step 2

- Compute variance and co-variance

$$
\begin{aligned}
& \operatorname{var}\left(x_{1}\right)=\frac{\left(x_{1}^{1}-\bar{x}_{1}\right)^{2}+\left(x_{1}^{2}-\bar{x}_{1}\right)^{2}+\ldots+\left(x_{1}^{n}-\bar{x}_{1}\right)^{2}}{n-1} \\
& \operatorname{var}\left(x_{2}\right)=\frac{\left(x_{2}^{1}-\bar{x}_{2}\right)^{2}+\left(x_{2}^{2}-\bar{x}_{2}\right)^{2}+\ldots+\left(x_{2}^{n}-\bar{x}_{2}\right)^{2}}{n-1}
\end{aligned}
$$

## Step 2

## - Compute variance and co-variance

$$
\begin{gathered}
\operatorname{var}\left(x_{1}\right)=\frac{\left(x_{1}^{1}-\bar{x}_{1}\right)^{2}+\left(x_{1}^{2}-\bar{x}_{1}\right)^{2}+\ldots+\left(x_{1}^{n}-\bar{x}_{1}\right)^{2}}{n-1} \\
\operatorname{var}\left(x_{2}\right)=\frac{\left(x_{2}^{1}-\bar{x}_{2}\right)^{2}+\left(x_{2}^{2}-\bar{x}_{2}\right)^{2}+\ldots+\left(x_{2}^{n}-\bar{x}_{2}\right)^{2}}{n-1} \\
\operatorname{cov}\left(x_{1}, x_{2}\right)=\frac{\left(x_{1}^{1}-\bar{x}_{1}\right)\left(x_{2}^{1}-\bar{x}_{2}\right)+\left(x_{1}^{2}-\bar{x}_{1}\right)\left(x_{2}^{2}-\bar{x}_{2}\right)+\ldots+\left(x_{1}^{n}-\bar{x}_{1}\right)\left(x_{2}^{n}-\bar{x}_{2}\right)}{n-1} \\
\operatorname{cov}\left(x_{2}, x_{1}\right)=\frac{\left(x_{2}^{1}-\bar{x}_{2}\right)\left(x_{1}^{1}-\bar{x}_{1}\right)+\left(x_{2}^{2}-\bar{x}_{2}\right)\left(x_{1}^{2}-\bar{x}_{1}\right)+\ldots+\left(x_{2}^{n}-\bar{x}_{2}\right)\left(x_{1}^{n}-\bar{x}_{1}\right)}{n-1}
\end{gathered}
$$

## Step 2

- These expressions describe how the observations differ from their average.


## Step 3

- For a covariance matrix

$$
C=\left[\begin{array}{cc}
\operatorname{var}\left(x_{1}\right) & \operatorname{cov}\left(x_{1}, x_{2}\right) \\
\operatorname{cov}\left(x_{2}, x_{1}\right) & \operatorname{var}\left(x_{2}\right)
\end{array}\right]
$$

- Notice that C is symmetric since $\operatorname{cov}(x l, x 2)=\operatorname{cov}(x 2, x l)$.


## Step 4

- In this case, the covariance matrix is

$$
C=\left[\begin{array}{cc}
.34 & .69 \\
.69 & 1.42
\end{array}\right]
$$

- Now find the eigenvalues and eigenvectors.

$$
\begin{gathered}
C-\lambda \mathbb{I}=\left[\begin{array}{cc}
.34-\lambda & .69 \\
.69 & 1.42-\lambda
\end{array}\right] \\
\lambda^{2}-1.76 \lambda+.0067=0
\end{gathered}
$$

## Step 4

$$
\begin{array}{rlrl}
\lambda_{1}=.0074 & & \lambda_{2}=1.7588 \\
\vec{v}_{1}=\left[\begin{array}{ll}
-.89, & .44
\end{array}\right] & \vec{v}_{2}=\left[\begin{array}{ll}
.44, & .89
\end{array}\right]
\end{array}
$$

- Large eigenvalues indicate the eigenvector is important.
- Small eigenvalues indicate little of the data variation occurs in that direction.


## End Result



- So the "dominant" eigenvector captures the data trend.
- Can Say $x_{2}=2 * x_{1}$

$$
\vec{v}_{2}=\left[\begin{array}{ll}
.44, & .89
\end{array}\right]
$$

## Another example



- Data appears much more random and less corollated.
- PCA will tell you this.


## PCA Results

$$
\begin{aligned}
& \lambda_{1}=.91 \\
& \lambda_{2}=1.05
\end{aligned}
$$

- Nether eigenvalue is dominant.
- So there is no "trend" in the data



## PCA Recap

- Large eigenvalues are associated with "directions" that account for a lot of data variation.
- This suggests a correlation between variables.
- Small eigenvalues are associated with directions that account for very little data variation.

